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An extensive experimental investigation of the binary collision dynamics of water 
drops for size ratios of 1,0.75, and 0.5, for the Weber-number range of 1 to 100, and 
for all impact parameters is reported. Two different types of separating collisions, 
namely reflexive and stretching separations, are identified. Reflexive separation is 
found to occur for near head-on collisions, while stretching separation occurs for 
large-impact-parameter collisions. The boundaries between both of the separating 
collisions and coalescence collision are found experimentally. Theoretical models for 
predictions of the reflexive and stretching separation are also given. 

1. Introduction 
Collision dynamics of liquid drops is one of the most interesting yet very 

complicated problems in fluid dynamics. This phenomenon commonly occurs in 
atmospheric raindrop formation, and among dispersed phase systems such as in 
liquid-liquid extraction, emulsion polymerization, waste treatment and hydrocarbon 
fermentation (Shah et al. 1972; Park & Blair 1975). Recently, it has also been found 
to be important in dense spray systems, where drop collisions can significantly alter 
the spray characteristics, such as drop size and velocity distribution (O’Rourke & 
Bracco 1980). 

Because of its complexity, the study of this three-dimensional free-surface flow 
problem has been mostly limited to experiments. Numerous experimental results on 
drop collision phenomenon have appeared in the literature, and a very complete 
review of these works up to 1970 is given by Park (1970). In fact Park’s own work 
is perhaps the most complete investigation of the drop collision phenomenon up to 
the present. Also the recent book by Vasenin et al. (1986), published in Russian, 
refers to much of the Russian literature in this field. To name a few, early works by 
Gorbachev & Mustel (1935) and Gorbachev & Nikiforova (1935) report observations 
of the collision of a drop suspended at  the end of a heavy pendulum or a slide with 
a stationary drop on a paraffin plate; Arkhipov, Vasenin & Trofimov (1983) have 
conducted a detailed cinematographic investigation of drop collisions. 

A large group of investigations have considered the impact of a falling drop on a 
suspended or a half-drop, at  different relative velocities and impact parameters, and 
for various ambient conditions (Schotland 1960; Jayaratne & Mason 1964; List & 
Whelpdale 1969). The collision outcomes of such experiments are significantly 
altered by the existence of the supporting systems. These problems are eliminated by 
using controlled collisions between pairs of drops in free flight. Such studies are 
exemplified by the works of Ryley & Bennet-Cowell(1967), Cotton & Gokhale (1967), 
Adam, Lindblad & Hendricks (1968), Brazier-Smith, Jennings & Latham (1972), 
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Levin, Neiburger & Rodriguez (1973), Bradley & Stow (1978, 1979), Arkhipov et al. 
(1983), Podvyotsky & Schraiber (1984), Ashgriz & Givi (1987), and Jiang, Umemura 
& Law (1990). 

The major objectives of drop collision studies have been to answer the following 
questions : (a)  what are the drop collision outcomes and their characteristics ! ( b )  
what parameters, and their values, define the boundaries between different types of 
collisions ? Neither of the above questions have been fully answered up to this date. 
However, some generalized collision outcomes have been reported, which can be 
categorized into four different types, namely bouncing, coalescence, separation, and 
shattering collisions. In bouncing collision, contact of drop surfaces is prevented by 
the intervening gas film, and drops bounce apart. Coalescence collision refers to 
collisions in which two drops permanently combine and generate one single drop. 
Separation collision is when drops combine temporarily and later separate into a 
‘string’ of two or more drops. And shattering collision, which is the characteristic of 
high-relative-velocity collision, is when drops disintegrate into a ‘ cluster’ of many 
smaller droplets. In this paper we shall show that there are many sub-categories of 
drop collision within the above generalized ones and we shall discuss them based on 
the governing physical parameters. 

As far as the boundaries between different types of collisions are concerned, only 
a few experiments have provided quantitative results. For instance, Adam et al. 
(1908) obtained the boundary between coalescence and separation for a pair of equal- 
size drops with 600 pm and 120 pm diameters. More detailed studies by Park (1970), 
Brazier-Smith et al. (1972), and Arkhipov et al. (1983) have been conducted on the 
collision of water drops with different size ratios. They have reported the critical 
parameters for which bouncing, coalescence, and separating collisions occur. More 
recently, Jiang et al. (1990) have completed an experimental investigation on the 
collision of normal-alkane drops. Their results show that the collision of alkane drops 
is significantly different than those of water drops. Because control and measurement 
of all the governing parameters in the collision phenomenon is a difficult task, some 
researchers have provided information on the probability of occurrence of a 
particular type of collision. For instance, Low & List (1982a, b), and Ashgriz & Givi 
(1989) have found the probability of coalescence, i.e. coalescence efficiency, for water 
and fuel drops respectively. In this paper we shall define the drop collision 
phenomenon in a more detailed and physically rational fashion, and provide 
quantitative boundaries between coalescence and separating collisions. 

2. Experimental set-up 
The technique used in our experiments is based on the collision of two uniform-size 

drop streams. A water jet is issued from a glass nozzle attached to a flattened 
aluminium tube with piezoelectric plates on its both sides. The piezoelectric plates, 
which are subject to a square wave with alternating voltage, expand and contract, 
disturbing the liquid jet. With careful control of the flow rate and the alternating 
frequency, the liquid jet is broken into a stream of uniform size drops. Steady flow 
of the liquid is obtained by using a pressurized tank. The pressure in the tank is 
controlled by a regulated nitrogen cylinder (for more details, see Ashgriz & Givi 
1987; Po0 1989). 

The two drop streams collide on a vertical plane and their collision dynamics are 
recorded by a video camera placed horizontally. It should be noted that the collision 
point of two streams has to be situated far downstream of the nozzle so that the 
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initial oscillatory motion of the drops is completely damped. The main measurement 
technique used in our experiments is flow visualization. Two different kinds of 
visualization are used, namely high-speed video and conventional video recording. 
The recording done by a high-speed video camera (Kodak EktaPro 1000 Motion 
Analyzer) is suitable for visualizing the evolution of colliding pair of drops. This 
camera is usually operated a t  1000 frames per second. The recorded video pictures 
are viewed frame by frame, and the collision angle and the relative positions of the 
drops are measured. 

The drop diameter, d ,  and velocity, u, are calculated by the following formulae : 

u = fs, (2) 

where s is the spacing between drops, measured from the video pictures, f is the 
alternating disturbance frequency, which also represents the frequency of drop 
generation, and q is the liquid flow rate, measured by a graduated cylinder. 

The high-speed video camera is in black and white and it cannot provide any 
information on the mass transfer of the liquid during the collision process. Therefore, 
a conventional (30 frames per second) colour video camera is used to record the 
collision of coloured drops. In  this case, both piezoelectric plates are connected to the 
same function generator, resulting in two synchronized drop streams. Each and 
every collision is then exactly the same as the previous one. This allows visualization 
of the collision phenomenon by the stroboscopic technique. 

3. Description of the binary drop collision phenomenon 
Consider two spherical liquid drops travelling in a gas medium. As the two drops 

approach each other, a gas layer may get trapped between them. Under certain 
conditions this compressed gas layer may prevent the contact of the drop surfaces, 
and so the drops deform and bounce apart. Bouncing collision is therefore dependent 
on the ambient gas characteristics, and its study will require quantification of the 
external parameters, such as the density of the surrounding gas, the flow field 
surrounding the drops, and the shape of the drops upon impact. Deformation and 
drainage of the gas film separating two drops has been the subject of many 
investigations, a recent review of which is given by Wasan & Malhotra (1986). 
Weinbaum, Chen & Ganatos (1989) have also provided an analysis of the collision 
and rebound of surfaces due to the fluid motion and pressure forces in the gap 
between them. In  the present work no quantitative information on the external 
parameters is obtained, and therefore no attempt is made to correlate the bouncing 
collision data. 

Generally, if the two drops do not bounce and their surfaces touch one of the 
following phenomena may occur. They may coalesce permanently ; they may 
combine temporarily, and later separate into two or more drops ; or they may shatter 
upon impact. The shattering collision occurs a t  high velocities where the surface 
tension forces are only of secondary importance, and the phenomenon is inertia 
dominated. Because of the limitations in our experimental set-up in generating high- 
velocity binary drop collisions, shattering collisions are not studied either. The main 
concern of this work is, therefore, coalescence and separating collisions. 
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FIGURE 1. Schematic of the collision of two moving drops, with velocities u, and us, diameters d, 
and d,, colliding with a collision angle of u, and an impact parameter X. The symbols used in this 
figure are defined in the text. 

In  the range of the parameters used in our experiments, the effects of the 
surrounding air on the collision outcome seem insignificant. Therefore, the 
phenomenon of binary drop collision can be described based on the liquid drop 
density p ,  viscosity y ,  surface tension IT, the diameter and velocity of the larger drop 
d, and ul, and those of the smaller drop ds and us. An important parameter governing 
the collision outcome is the relative velocity of the two drops. If the trajectories of 
the two drops form an angle a (see figure l ) ,  called the collision angle, the relative 
velocity of the two drops will be equal to  

u = (uf + u," - 2u, us cos a):. 

Another important parameter governing the collision phenomenon is the impact 
parameter, X, which is defined as the distance from the centre of one drop to the 
relative velocity vector placed on the centre of the other drop (see figure 1).  By 
dimensional analysis the above parameters can be grouped into four dimensionless 
numbers. They are Reynolds number, Weber number, drop diameter ratio, and non- 
dimensional impact parameter, x, which are defined as follows : 

I n  binary water-drop collisions with Reynolds numbers in the range of 500 to  4000, 
the range studied in this work, the Reynolds number does not seem to play a 
significant role on the outcome of the collision. Therefore, the main parameters that 
influence collision outcome are Weber number We, drop diameter ratio A ,  and impact 
parameter x. 

Here, the collision outcome of drops for a wide range of Weber numbers, all 
possible impact parameters, and different size ratios are investigated. The Weber 
number is controlled by changing the relative velocity. The relative velocity is 
changed by adjusting the liquid flow rate, or by varying the collision angle, a. The 
drop diameters are controlled by the size of the glass nozzles. Five different nozzle 
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FIGURE 2. Analytically obtained regions of coalescence, reflexive separation, and stretching 
separation for drop size ratio d = 1 .O, together with experimental data ( + , stretching separation ; 
0,  coalescence ; A, reflexive separation. 

sizes are used: 100, 200, 300, 400, and 500 pm. They are combined to give diameter 
ratios from 0.5 to 1 .O. The impact parameter is calculated by measuring the positions 
of two drops before collision and using the following equation : 

Here, b is the distance between the centres of the drops before the collision, /3 is the 
angle between the trajectory of the small drop and the centre-to-centre line, and y 
is the angle between the trajectory of the small drop and the relative velocity vector, 
which is calculated from the following relation : 

y = sinp1 -sina . (: 1 (4) 

More than five hours of video tape from different collision outcomes are closely 
studied. A selected number of data points for different types of collisions and their 
boundaries are obtained for a range of Weber numbers and impact parameters, and 
for three different size ratios A = 0.5,0.75, and 1. A series of colour photographs aids 
our description of binary drop collision. 

3.1. Collision of two equal-size drops, A = 1 

Figure 2 shows the regions for different types of collision outcomes for two equal-size 
drops in the Weber-number range of 5 < We < 100, and all impact parameters, 
0 < x < 1. For this Weber-number range three collision outcomes, namely coalesc- 
ence, reflexive separation and stretching separation are identified. These collision 
outcomes are described next. 
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FIQURE 3. Schematic of reflexive separation for the head-on collision of two equal-size drops. 

3.1.1. Rejlexive separation collision 

This refers to the outcome of collisions with impact parameters below the limit set 
by the lower curve in figure 2. The easiest way of describing reflexive separation is 
by considering the head-on collision of two equal-size drops as shown schematically 
in figure 3. Head-on collision refers to collisions in which the relative velocity vector 
coincides with the centre-to-centre line (i.e. x = 0) .  When two equal-size drops collide 
head-on they form a disk-like 0r.a torus-like drop, the exact shape of which depends 
on the Weber number. A top view of a torus-like drop is shown in figure 4. It is called 
a torus-like, because it does not have a hole at the centre, instead a thin liquid film 
is always observed. Owing to the large curvature a t  the circumference of this disk- 
/torus-like drop, there will be a pressure difference between its inner and outer 
regions. The disk will therefore contract radially inward, and will push the liquid out 
from its centre. The contraction process is therefore a reflexive action by the liquid 
surface. This reflexive action will eventually generate a long cylinder with rounded 
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FIGUEE 4. Top view of a head-on collision of two equal-size drops. 

ends (figure 3). If the initial Weber number is not large, this cylinder will just 
oscillate until a spherical drop is formed. However, as the Weber number is 
increased, a critical condition will be reached, a t  which point the liquid cylinder 
formed after the surface reflex, will break into two drops. This critical point is the 
onset of the type of collision outcome which we call rejexive separation, as it is the 
reflexive action of the surface-tension forces that causes the separation. 

The experimental results show that, for equal-size drops, the onset of reflexive 
separation is a t  We = 19, and x = 0. At this point two drops are generated with no 
satellites. (The Satellite drop is a relative term used to identify drops whose 
diameters are much smaller than the other surrounding drops.) The drops essentially 
keep their identities with little mass transfer during the formation of disk-/torus-like 
drops and the cylinder extending periods. Figure 5 (plate 1) shows a reflexive 
separation of two water drops with no satellites a t  We = 23 and x = 0.05. One of the 
streams is coloured to show the extent of mass transfer during the reflexive 
separation. Because the impact parameter is not exactly equal to zero, figure 5 shows 
a small amount of mass transfer between the two drops. 

During a head-on collision, as the Weber number is increased the reflexive 
separation becomes more complicated. This is due to the generation of a thinner 
disk/torus and, consequently, formation of a longer cylinder. As the Weber number 
is increased, first a satellite is generated in the middle of the two bigger drops which 
are called the primary drops. The satellite size grows with increase in Weber number. 
At We = 44 the satellite size becomes equal to those of the primary drops. Figure 6 
(plate 1)  shows three-drop reflexive separation a t  We = 40 and x = 0. The centre drop 
usually goes through large oscillations before i t  becomes spherical. It should also be 
noted that the mass of the centre drop is a mixture of the masses of the two parent 
drops. If the Weber number is further increased, the size of the middle drop becomes 
bigger than those of primary drops. 

At higher Weber numbers the liquid cylinder formed after the surface reflex 
becomes so long that it breaks into four drops. The number of drops formed increases 
with increase in Weber number. For instance, four-drop reflexive separation is 
observed at We = 83, five drops a t  We = 96, seven drops a t  We = 103, nine drops at  
We = 146, ten drops at We = 154, and thirteen drops a t  We = 184. Figure 7 (plate 1) 
shows a five-drop reflexive separation a t  We = 96 for a slightly off-centre collision. It 
should be noted that the edge drops break off first. 

Effect of impact parameter. Reflexive separation is also observed for impact 
parameters other than zero. However, as the impact parameter is increased, the 
reflexive separation becomes more complicated. If  the collision is not head-on (i.e. 

7-2 
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FIGURE 8. Schematic of reflexive separation for the off-centre collision of two equal-size drops, 

off-centre collision) only part of the collision energy goes to  the reflex action, and the 
rest will tend to  stretch the combined mass in the directions of their initial 
trajectories. (Here, the combined mass is defined as the total liquid mass of the two 
collided drops prior to the final outcome of the collision.) These competing effects will 
generate a four-lobed-shaped drop. A schematic of an off-centre reflexive collision is 
shown in figure 8. Comparing figure 8 with the head-on collision of figure 3, one can 
see large differences in the shapes of the combined mass. The reflexive separation is 
easier if the shape of the combined mass shortly after the collision is smooth. This 
usually happens for smaller impact parameters : for instance, a head-on collision 
usually results in smooth disk-/torus-like drops (see figure 4). The contraction of such 
a drop unifies the internal fluid flow which is mainly moving in two opposite 
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FIGURE 5. Reflexive separation with no satellite for A = 1, We = 23, and x = 0.05. 

FIGURE 6. Three-drop reflexive separation for A = 1, We = 40, and x = 0. 

FIGURE 7. Five-drop reflexive separation for A = 1, We = 96, and x - 0. 

FIGURE 10. Off-centre reflexive separation for A = I .  We = 40, and x = 0.1. 
The formation of a four-lobed drop after the collision is shown. 

(/?icing p. 190 



Journal of Fluid Mechanics, Vol. 221 Plate 2 

FIGURE 12. Stretching separation at A = 1, W = 53, and x = 0.38. 

FIGURE 13. One-satellite stretching separation at 
A = 1, We = 83, andx = 0.34. 

FIGURE 14. Stretching separation at A = 1, 
We = 83, andx = 0.43. 

FIGURE 15. Coalescence collision at A = 1, We = 10, and x = 0.5. 

FIGURE 16. Coalescence collision at A = 1, We = 10, and x = 0.7. 

FIGURE 17. Coalescence collision at A = 1, We = 53, and x = 0.28. 
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FIQURE 9. Top view of a slightly off-centre collision of two equal-size drops. 

directions. This opposing flow condition will favour reflexive separation. For an off- 
centre collision a deformed disk-/toruelike drop is formed (a top view of one is shown 
in figure 9). The contraction of this deformed drop produces a mixed internal flow 
which reduces the effective reflexive action. Figure 10 (plate 1) shows a reflexive 
separation a t  We = 40 and x = 0.1. The four-lobed-shaped drop that appears after 
the reflexive action is clearly seen. Also, the distribution of the red colour in the 
combined mass shows the existence of large amounts of mass transfer. In figure 10 
only two drops are generated after the collision, indicating that the reflex action is 
smaller than for the collision in figure 6 where three drops were formed for the same 
Weber number. 

The experimental results show that as the impact parameter is increased, the total 
number of drops produced by the reflexive action reduces. For example, at the onset 
of reflexive separation, We = 19, an off-centre collision results in coalescence. Also, if 
the head-on collision produces three equal-size drops, an increase in the impact 
parameter will lead to the reduction of the size of the middle drop, and eventually 
only two drops are formed. If the head-on collision produces five drops, the increase 
in the impact parameter will make the collision outcome go through four, three, two 
drops, and finally coalescence. 

3.1.2. Stretching separation 

When two drops collide a t  high impact parameters, only a portion of them will 
come in direct contact, resulting in a region of interaction. This region of interaction 
is shown in figure 11 as the cross-hatched section. The remaining portions of the 
drops will tend to flow in the direction of their initial trajectory and consequently 
stretch the region of interaction. Therefore, the outcome of collision will depend on 
the competition between the surface energy of the region of interaction, which is 
trying to hold the two drops together, and the portion of the initial drop kinetic 
energy which is trying to stretch and separate the combined mass. For the same 
Weber number if the impact parameter increases, the region of interaction reduces, 
resulting in a higher ratio of stretching energy over the surface energy of the 
interaction region. Separation occurs when this ratio reaches a critical value, which 
will be quantified in $4.3. We refer to this kind of separation as stretching separation. 

The boundary between coalescence and stretching separation is shown by the 
upper curve in figure 2. At the onset of separation, for any Weber number, two drops 
of similar size, without any satellite, will be produced. The increase of impact 
parameter will result in the generation of one satellite between the two drops. As the 
impact parameter increases the number of satellites increases until a critical impact 
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FIGURE 11. Schematic of the stretching separation collision of two drops. 

parameter is reached. Further increase in the impact parameter will reduce the 
number of satellites. One interesting feature of stretching separation is that the size 
of the satellites below this critical impact parameter are larger than the satellite sizes 
above it. The maximum number of satellites generated is related to the Weber 
number. 

Figure 12 (plate 2) shows a stretching separation for We = 53 and x = 0.38, which 
results in only two drops. After separation the two drops are severely deformed, and 
show some degree of mass transfer. Figures 13 and 14 (plate 2 )  show one-satellite and 
two-satellite stretching separations at We = 83 and for x = 0.34 and x = 0.43 
respectively. Figure 14 clearly shows the stretching of the region of interaction, 
which eventually under the action of surface tension will contract and form two 
satellite drops. At higher impact parameters, more satellites will be formed. 
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FIGURE 18. Analytically obtained regions of coalescence, reflexive separation, and stretching 
separation for drop size ratio A = 0.75, together with experimental data (symbols as figure 2) 

3.1.3. Coalescence 
The experimentally obtained coalescence region is shown in figure 2. At Weber 

numbers between 1 and 19 and for small impact parameters, all collisions result in 
coalescence. (Recall that the boundaries between coalescence and bouncing collisions 
are not reported here.) Figures 15 and 16 (plate 2) show coalescence collisions a t  
We = 10. The evolutionary process in a coalescence collision at low Weber numbers is 
governed by the competition between stretching and drop drainage. Drop drainage 
refers to the flow of liquid from the higher pressure drop region into the point of 
contact to form a liquid bridge. The higher the impact parameter the higher the 
stretching and, therefore, the shorter the time for drainage. It is seen that as the 
impact parameter increases less mass moves towards the bridge zone, as is evident 
by comparing figures 15 and 16. Figure 17 (plate 2) shows a coalescence collision a t  
We = 53 and x = 0.28. For higher-Weber-number collisions, the coalesced drop is 
more deformed and the mass transfer is faster. 

3.2. Collision of two drops of diflerent sizes 
The collision dynamics of two drops with size ratios of 0.75, and 0.5 are also 
investigated. The results are presented in figures 18 and 19. These figures show that 
as the size ratio decreases both the reflexive and stretching separation regions 
become smaller. Hence, the coalescence region becomes larger. The collision 
phenomena for these cases are described next. 

3.2.1. ReJlexive separation 
For two drops of different diameters, the phenomenon is generally more complex. 

A photograph of the reflexive separation at  d = 0.5, We = 56, and for close to head- 
on collision is shown in figure 20 (plate 3). Similarly to other head-on collisions, the 
liquid in both drops will spread radially in the plane normal to the centre-to-centre 
line. This will generate a disk-like drop which will later contract, forming a liquid 
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column. Unlike the liquid column formed by the collision of equal-size drops, drops 
with different sizes form an asymmetric column. For high enough Weber numbers, 
this column will eventually break into two or more drops. For instance, for the head- 
on collision of two drops with A =  0.8, a t  We = 30, two drops are formed, a t  
We = 56 three drops, and at We = 75 five drops. 

A very interesting feature of reflexive separation of two drops with different sizes 
is that the initially large drop becomes smaller after the collision and vice versa : the 
initially small drop takes some mass from the large drop, during the contact time, 
and becomes larger after the collision. As the impact parameter increases, it becomes 
more difficult to obtain reflexive separation. It is observed that off-centre collisions 
result in shorter columns which may also be curved. These columns usually break 
into a fewer number of drops than for a head-on collision. A more detailed description 
of the phenomena is given by Po0 (1989). 

3.2.2.  Stretching separation 

As was described earlier, the separation phenomenon is characterized by the 
stretching of the region of interaction, or the bridge zone. At a given Weber number 
stretching separation happens a t  higher impact parameters for smaller diameter 
ratio collisions. The reason is that the momentum of the smaller drop cannot 
overcome the inertia and the surface forces in the region of interaction. The collision 
outcome of two unequal-size drops is governed by two opposing effects, namely drop 
drainage and drop stretching. Because of the size ratio, there would be a pressure 
difference between the two drops, the smaller drop being a t  higher pressure. 
Therefore, as soon as the bridge is formed liquid will tend to flow from the small drop 
to the large drop. The total mass transfer will depend on the contact time of the two 
drops, which in turn is dependent on the Weber number. Therefore, as the contact 
time shortens, the drainage effect will reduce, resulting in smaller mass transfer from 
the small drop to the large drop. On the other hand, at a given impact parameter as 
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FIGURE 19. Analytically obtained regions of coalescence, reflexive separation, and stretching 
separation for drop size ratio A = 0.5, together with experimental data (symbols aa figure 2). 
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the Weber number increases, the stretching effect will increase. Because the large 
drop appears softer to the small drop, the small drop will scoop up some of its mass. 
Therefore, the stretching effect for unequal-size drops will cause mass transfer from 
the large drop to the small drop. The two opposing effects of drainage and stretching 
will determine the size of the drops after the collision. Figure 21 (plate 4) ( A  = 0.5, 
We = 52, x = 0.4) clearly shows the drainage effect during the contact time. Figure 
22 (plate 4) shows stretching separation for A = 0.47 a t  a high Weber number of 139 
and x = 0.5. As the Weber number increases, the smaller drop tends to shear off more 
of the mass of the large drop and generates more satellites. 

3.2.3. Coalescence 
Generally, it  is more difficult for two unequal-size drops to separate after the 

collision than for two equal-size drops. This is because in the former case the mass 
in the small drop during the collision will tend to flow into the large drop. Figure 23 
(plate 4) shows a head-on coalescence collision for A = 0.6 and We = 25. For this 
Weber number, the reflexive action is not strong enough to break the drops, as it was 
observed in figure 20. Therefore, the combined mass simply oscillates until a 
spherical drop is formed. It should be noted that, similarly to most low-Weber- 
number collisions, there is very little mixing during the initial period of the collision. 
In figure 24 (plate 4) a collision a t  We = 30 and A = 0.65 is shown. The small drop 
forms a large cavity in the large drop. In  the process of contraction an air bubble gets 
trapped in the drop. This is exclusively observed in unequal-size drop collision. 

4. Theoretical prediction of reflexive and stretching separation 
A detailed theoretical treatment of the collision dynamics of liquid drops requires 

the solution of the unsteady three-dimensional Navier-Stokes equations with free 
surfaces. Numerical simulation of drop collision is presently being carried out by 
these authors and its results will be published in the near future. However, the 
occurrence of different types of collisions can be predicted by a simple energy balance 
analysis. In this type of analysis one has to develop a physical criterion to explain 
the occurrence of a particular collision type, based on which a simple parametric 
relationship can be found to define the boundaries of that collision type. In the 
following sections we shall present criteria for the occurrence of reflexive and 
stretching separation, respectively. 

4.1. Effective refiexive energy 
In  this section we shall introduce the concept of effective reflexive energy, which is 
assumed to be the cause of the reflexive separation. Consider the collision of a pair 
of drops using mass-centre coordinates, as shown in figure 3. In this coordinate 
system, the drops after the collision will be in a state of combined mass, which has 
no translational kinetic energy. Therefore, the total energy of the combined mass a t  
any state will only comprise the surface energy, and the internal kinetic energy. The 
dissipated energy for a water drop is not significant and it is neglected. This can be 
justified by calculating the Laplace number Lp( = We/Re2) which indicates the ratio 
of the viscous effects to the surface tension effects. For viscous dissipation to  be 
important the Laplace number has to be large. However, in the range of parameters 
studied here, Lp is small, of the order of We shall assume that the combined 
mass a t  any phase of the collision process can be transformed into a nominal 
spherical drop which has the same volume as the sum of the volumes of the parent 
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FIQURE 25. The nominal spherical drop which represents the energy state of the combined mass 
throughout the collision process. 

drops (figure 25). The internal kinetic energy of this nominal drop, K,, is then equal 
to the sum of the kinetic and surface energies of the parent drops minus the surface 
energy of the nominal drop. 

If the nominal drop is going to undergo reflexive separation, there must be some 
opposing flows inside the drop. We shall call these flows reflexive flows. Based on the 
experimental observations it is evident that the reflexive flows are generated by the 
surface reflex. In the collision of two liquid drops the reflexive action is generated by 
two effects. The first effect is due to the flows in the portions of drops before collision 
which directly oppose each other. We shall refer to these flows as the counteractive 
flows. Figure 8 shows the counteractive flow region by the cross-hatched lines. The 
second source of reflexive action is due to the surface-induced flows. This is easily 
understood by referring to figure 3 and assuming that the drops are not moving. 
When two drops with zero initial velocities are brought into contact, the surface 
tension effects will force the flow towards the contact point. This phenomenon, which 
we previously called the drainage effect, after the reflexive action will generate 
opposing flows in the combined mass. We shall refer to these flows as the excess 
surface-induced flows, since they are generated by the excess surface energy (the 
difference between the surface energy of the parent drops and that of the nominal 
spherical drop). 

The kinetic energy of the counteractive flows, Kc,  is generated by the portions 
of drops which directly oppose each other. These portions are assumed to be the 
prolate regions in each drop with their axes passing through the middle of the impact 
parameter (figure 8). Therefore, K ,  is equal to 

where V,, and qp are the volumes of the prolate regions in the small and large drops 
respectively, given by 

(6) 
and 
where 

U, and Us are the velocities of the large and small drops in the mass-centre 
coordinates respectively, given by 

A3u u, = - 
1+43’  (9) 

U us = - 
1 + 4 3  
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FIQURE 26. A description of the drop internal flow velocity for the onset of reflexive separation. 

The kinetic energy of the excess-surface-induced flows, K,, is equal to the difference 
between the surface energy of the parent drops and that of the combined mass. That 
is 

Up to this point we have only considered the opposing flows due to the reflex actions. 
However, for off-centre collisions, as discussed in $3, part of the initial drop kinetic 
energy will try to stretch the combined mass. The stretch-generated flows, called the 
stretching flows, are approximately perpendicular to the reflexive flows (see figures 
8 and 25). The stretching flows reduce the reflexive energy. The kinetic energy of 
the stretching flows is basically equal to the leftover kinetic energy of the parent 
drops. That is 

where V, and V ,  are the total volumes of the large and small drops, respectively. Based 
on the above discussions, the effective reflexive energy, K,, can then be calculated 
from the following equation : 

K,  = c ~ ~ d ~ [ ( l + d ~ ) - ( l + d ~ ) g ] .  (11 )  

Ks = "V-Kp)  u : + ( v , - v , p )  El> (12) 

K,. = K,+K,-K, (13) 

or 
We 

124(1+43)2 
( l + d 2 ) - ( l + d 3 ) f +  

where = 2(1-,5)z(l--&z)~-l, (15) 

312 = ~(A-&)~(A~-,~~)LI~.  (16) 

4.2. ReJEexive separation criterion 
We shall now present a criterion for the occurrence of reflexive separation, using the 
simplest case of the collision of two equal-size drops for the development of our 
model. When the two drops collide, they first form a thin disk which will later 
contract into a slender cylinder. As the reflexive energy stretches the spherical drop, 
a round-ended cylinder with radius r and length 1+2r, is formed (figure 26). Based 
on Rayleigh's (1945) linear theory, if the length-to-diameter ratio of a liquid column 
is equal to n, the column becomes unstable. The round-ended cylinder is, however, 
different from a liquid column, which does not have surface forces pushing in from 
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its two ends. For this drop with l / r  = 27c - 2, if the fluid inside is stagnant, the surface 
forces from the two ends will force the flow towards the centre, preventing the 
breakup. The liquid cylinder can break only if the internal flow field stops the 
retraction of the two ends. In  this manner, the round-ended cylindrical drop is held 
in space and time, and the disturbances can grow and break the drop. An estimation 
of the internal velocity that is just enough to sustain this drop shape is now 
attempted. 

Take a control volume at the left-hand end of the cylinder, as shown in figure 26. 
The force balance can be written as 

AJu'pdV-puiA dt = ( p b - p a ) A ,  

where p a  = 2cr/r, pb  is estimated as alr, u, is the reflexive velocity, A is the cross- 
sectional area, and V is the volume. The unsteady term can be estimated as a'dm/dt, 
where the average velocity, ti', is approximated by $,. Also, the term dmldt is just 
pa: A .  With all the terms estimated, the velocity u, can be solved to  be 

u, = (Ey. 
The velocity distribution within the cylinder is not readily determined. However, 
owing to the ease of flow of the liquid in the drop, it is appropriate to say that, except 
in the vicinity of the centreplane, the above-calculated velocity magnitude should 
exist in most of the cylinder. Therefore, the minimum kinetic energy within the drop 
that is needed to sustain its shape, can be approximated as follows: 

K ,  = 47cr2a -+-- . [: :El 
The round-ended cylindrical drop is now transformed into a nominal spherical drop. 
The reflexive kinetic energy and the surface energy of this drop will t,hen represent 
the critical conditions for the onset of reflexive separation. The reflexive kinetic 
energy of this nominal spherical drop, K,*, is therefore equal to 

K,* = K,+S,-S,*, 

where K ,  is defined by (19), S ,  is the surface energy of the round-ended cylindrical 
drop, and S,* is the surface energy of the critical nominal spherical drop (i.e. S: = 
47cr2cr( 1 + 31/4r)%). The ratio of the reflexive kinetic energy to the surface energy of the 
critical nominal drop, r, will then represent a critical condition for the reflexive 
separation. This ratio is equal to 

When l / r  = 27c - 2, r is equal to 0.7425. According to the experimental results, for 
two drops of the same size colliding head on, the onset of reflexive separation occurs 
a t  We = 19. Based on this Weber number the critical kinetic energy for reflexive 
separation can be obtained. The reflexive kinetic energy is equal to the critical 
kinetic energy calculated this way plus the excess surface energy given in (11) .  The 
reflexive kinetic energy calculated this way is about 0.73 of the nominal surface 
energy. The above calculation of r is therefore verified by the experiment. 
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Based on our definition of reflexive kinetic energy, K,*, which is the cause of 
separation, and the surface energy of the nominal spherical drop, S,*, which prevents 
the separation, one might expect that separation should occur when K,* 2 S,*. 
However, it should be noted that the breakup process of the nominal spherical drop 
is a transient one in which the drop shape changes continuously. Therefore when, for 
instance, the drop shape takes the form shown in figure 3 a t  the fifth stage, the 
surface energy of the neck region will actually help the separation rather than 
preventing it. It is, therefore, not surprising to see that the reflexive energy does not 
have to be as large as the nominal spherical drop surface energy for separation to 
occur. 

We now postulate that for a nominal spherical combined mass, when the effective 
reflexive kinetic energy is  more than 75% of its wominul surface energy, reflexive 
separation will occur. That is, the criterion for reflexive separation is 

K ,  2 0.75an(d: +a:);. (22) 

To find the boundary between coalescence and reflexive separation, we take the 
equal sign and use (14) for K, to derive the following equation : 

4.3. Stretching separation 
Consider collision of a pair of drops a t  a high impact parameter as shown in figure 
11. As it was discussed in $3.1.2 only a small portion of the drops will come into 
contact, resulting in a region of interaction. The remaining portions will tend to move 
in the direction of their initial trajectory. The stretching separation energy therefore 
consists of two parts. One is the kinetic energy of the region of interaction, and the 
other is the remaining part of the total kinetic energy. The effective kinetic energy 
of the region of the interaction is obtained by using the component of the drop 
velocities in the separating direction of the drops as shown in figure 11. 

In  stretching separation the region of interaction is the portions of the drops which 
overlap each other. The width of the overlapping region is simply equal to the sum 
of the drop radii minus the impact parameter, i.e. h = &d, +d,) ( l  - x ) .  The volumes 
of the interacting regions are found from the following equations : 

where q5s and 4, are defined as follows: 

for h < $is 

and for h > $i, 

for h < 

where 7 = ( l - x ) ( l + A )  
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The total effective stretching kinetic energy is therefore equal to 

= +[( V,  - qi) + (V, - Vi) ?3] +$p[Ki( V, sin 6)3 + V,,(U, sin @'I, (28) 

where 0 is the angle between the relative velocity vector and the centre-to-centre line 
a t  the time of collision (see figure 1 1 ) .  Therefore, sin €J = x. Note that the terms in the 
first square bracket on the right-hand side of (28) represent the kinetic energy of the 
region outside of the region of interaction, and the terms in the second square bracket 
are the effective stretching kinetic energies of the region of interaction. Equation (28) 
can be written in the following form: 

The surface energy a t  the region of interaction is assumed to  act against the 
stretching kinetic energy. The surface energy associated with the region of interaction 
is estimated as the surface energy associated with a cylinder with the same volume 
and with height h. (Another cylinder with the same volume but with diameter equal 
to the diameter of the smaller drop was also considered. However, the results were 
not as good.) The surface energy of the region of interaction is therefore equal to 

SSi = 2a[nh( Ki + V,,)]t 

or Ssi = a[2xV, d, 7(A3$,  + $,)I;. (30) 
The criterion for stretching separation is assumed to be when the total effective 
stretching kinetic energy, K,,, is larger than the surface energy of the region of 
interaction, which is opposing the separation. That is 

Ks, 2 Ssi. (31) 
Using the equal sign the stretching separation boundary can be calculated from the 
following equation : 

4(1+d3)2[3(1+d)(1-~)(A3#s+#J]i  
A2[(l  + A 3 )  - ( 1  -x2) ($s+ A3$l) ]  

W e  = ' 

5. Comparison with experimental data and other theories 
The theoretically derived curves for reflexive and stretching separation collisions 

are plotted as solid lines in figures 2 ,  18, 1 9 ,  along with the experimental data. The 
theoretical prediction of the boundaries between different types of collision is good. 
As there has been no previous theoretical prediction for the boundary between the 
reflexive separation and coalescence collision, only the model presented here, (23), is 
plotted in figures 2, 18, 19. However, there are other theoretical predictions for the 
stretching separation collision, which can be compared to our model. 

Three different theoretical treatments of the stretching separation phenomenon 
have been reported: Park (1970), Brazier-Smith et al. (1972) and Arkhipov et al. 
(1983). Park (1970) derived his equation from balancing the surface tension in the 
region of contact and the angular momentum. His equation in our notation can be 
written as 

2 

12 f ( A 2 - A + l ) ~  ( l + A 5 ) ( A 2 - A + l )  
.=(F) A w e ;  [ 5 A 3  



Coalescence a d  separation in binary collisions of drops 

1.00’ I I I !  I .  I !  I I I ! 8 . ’  

\ 

I 

20 1 

t 
0 25 50 75 100 

We 

FIGURE 27. Comparison of different stretching separation theories with the experimental results 
for drop size ratio A = 1.0. 

Brazier-Smith et at. (1972) suggested that separation will occur if rotational energy 
exceeds the surface energy required to reform the two drops from a coalesced 
nominal drop. Based on this criterion, they obtained the following relation : 

Arkhipov et al. (1983) used the minimum-potential-energy variational principle by 
equating to zero the first variation of the potential energy of the system in a 
coordinate system rotating with constant angular velocity. They obtained the 
following relation for the boundary between the stretching separation and 
coalescence : 

1 6 ( 1 + A 3 )  
2=d~( we ) a  

(35) 

These three curves are plotted in figures 27-29 for different size ratios. The results 
show that there is a significant difference between the three theories for different size 
ratios. The comparison with the experimental results shows that only the model 
presented here, (32), and Brazier-Smith et al.’s model, (34), can adequately predict 
the stretching separation boundary. However, for a small size ratio of A = 0.5 even 
the Brazier-Smith et al. model does not provide a good prediction for the stretching 
separation boundary. 

One important note regarding the previous models for stretching separation is that 
all the previous theories are based on a comparison between the rotational energy 
and some effective surface energy. They all assume that the angular momentum is 
the cause of the separation. However, a close look at  the experimental results clearly 
indicates that stretching separation occurs much earlier than the development of any 
significant rotation. This stretching, as described before, is due to the tendency of the 
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for drop size ratio A = 0.15. Curves defined in figure 27. 
FIGURE 28. Comparison of different stretching separation theories with the experimental results 
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FIGURE 29. Comparison of different stretching separation theories with the experimental results 
for drop size ratio A = 0.5. Curves defined in figure 21. 
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drops to move along their initial trajectory. Therefore, although some of the previous 
models, such as the one by Brazier-Smith et al., predict the separation boundary 
closely, their criterion is not physically observed. 

6. Concluding remarks 
Binary-collision dynamics of two water drops in the Weber number range of 1 to 

100 can be completely characterized based on the drop size ratio, the collision Weber 
number, and the impact parameter. In this Weber-number range, the Reynolds 
number does not seem to play a significant role in the outcome of a collision. Two 
fundamentally different separating collisions are observed. For close to head-on 
collisions, reflexive separation occurs. This is due to the reflexive action of the surface 
tension forces which results in two opposing flows internal to the combined mass. It 
is both experimentally and theoretically shown that the critical condition for the 
onset of reflexive separation occurs when the kinetic energy of these internal flows is 
larger than 75% of the surface energy of a nominal spherical drop having the same 
volume as the combined drops. Stretching separation on the other hand is simply due 
to the competition between the kinetic energy of the two drops and the surface 
energy of the region of interaction between them. 

During reflexive separation the drops will follow a reflective type of trajectory ; 
however, in stretching separation the drop trajectories after the separation deviate 
less. Reflexive separation may result in two or more drops. The number of drops 
formed depends on the Weber number, size ratio, and the impact parameter. For 
unequal-size-drop collisions, the small drop becomes larger and the size ratio of the 
drops in the string formed after separation reduces in the direction of the initially 
larger drop. 

In reflexive separation the increase in the impact parameter will cause a reduction 
in the number of drops formed. In stretching separation the increase in the impact 
parameter will first increase the number of satellites formed until a critical impact 
parameter is reached. Further increase in the impact parameter will result in 
reduction of the number of satellites. During reflexive separation the mixing 
increases with increase in the impact parameter, the reverse happens during 
stretching separation. 
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